An expert system for detecting automobile insurance fraud using social network analysis

نویسندگان

  • Lovro Subelj
  • Stefan Furlan
  • Marko Bajec
چکیده

The article proposes an expert system for detection, and subsequent investigation, of groups of collaborating automobile insurance fraudsters. The system is described and examined in great detail, several technical difficulties in detecting fraud are also considered, for it to be applicable in practice. Opposed to many other approaches, the system uses networks for representation of data. Networks are the most natural representation of such a relational domain, allowing formulation and analysis of complex relations between entities. Fraudulent entities are found by employing a novel assessment algorithm, Iterative Assessment Algorithm (IAA), also presented in the article. Besides intrinsic attributes of entities, the algorithm explores also the relations between entities. The prototype was evaluated and rigorously analyzed on real world data. Results show that automobile insurance fraud can be efficiently detected with the proposed system and that appropriate data representation is vital.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of State-of-the-art Classification Techniques for Expert Automobile Insurance Claim Fraud Detection

Several state-of-the-art binary classification techniques are experimentally evaluated in the context of expert automobile insurance claim fraud detection. The predictive power of logistic regression, C4.5 decision tree, k-nearest neighbor, Bayesian learning multilayer perceptron neural network, least-squares support vector machine, naive Bayes, and tree-augmented naive Bayes classification is ...

متن کامل

Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies

Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...

متن کامل

Providing a Model for Detecting Tax Fraud Based on the Personality Types of Corporate Financial Managers using the Neural Network Approach

One of the management measures to reduce tax liabilities is non-payment of taxes through tax fraud. Because personality factors may play a role in explaining tax ethics, examining personality traits and aspects of tax fraud can help to better understand the factors that influence tax decisions. The main purpose of this study is to provide a model for detecting tax fraud based on the personality...

متن کامل

Auto claim fraud detection using Bayesian learning neural networks

This article explores the explicative capabilities of neural network classifiers with automatic relevance determination weight regularization, and reports the findings from applying these networks for personal injury protection automobile insurance claim fraud detection. The automatic relevance determination objective function scheme provides us with a way to determine which inputs are most inf...

متن کامل

MEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection

Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011